Quiz 3

Grade AS

Subject Pure Mathematics

Paper Name Paper 3

Duration 40 minutes

Student's Information

Name (Pinyin)	English Name	Class	Group

Instructions

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Do **not** use an erasable pen or correction fluid.
- Write your answer to each question in the space provided.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- You are reminded of the need for clear representation in your answers.

Information:

- The total mark for this paper is 26.
- The number of marks for each question or part question is shown in brackets [].

$x = 2t + \sin 2t, y = \ln(1 - \cos 2t).$
Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \csc 2t$. [5]

 A curve has equation $y=\frac{e^{3x}}{\tan\frac{1}{2}x}$. Find the $x-$ coordinates of the stationary points of the curve in interval $0< x<\pi$. Give your answers correct to 3 decimal places.	[6]

3. The diagram shows the curve $(x^2+y^2)^2=2(x^2-y^2)$ and one of its maximum points M. Find the coordinates of M. [7]

Figure 1: Curve

$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{8x^3 + y^3}{3xy^2 + 4y^3}.$	[4]
	n the curve at which the tangent is parallel to the x -axis . [4]
ow that there are two points on the coordinates of these points	
	. [4]
	. [4]
	. [4]
	. [4]
	. [4]
	. [4]
	. [4]